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The mechanics of dunes and antidunes in 
erodible-bed channels 
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(Received 6 August 1962 and in revised forin 28 February 1963) 

An analytic model of free-surface flow over an erodible bed is developed and used 
to investigate the stability of the fluid-bed interface and the characteristics of 
the bed features. The model is based on the potential flow over a two-dimen- 
sional, moving, wavy bed with a sinusoidal profile of varying amplitude, and a 
sediment transport relation in which the transport rate is proportional to a 
power of the fluid velocity at the level of the bed. By assuming that the dominant 
wavelength is that for which the rate of amplitude growth is the greatest, expres- 
sions are obtained for the wavelength and velocity of the bed features. In  addi- 
tion, conditions for the occurrence of the different configurations, dunes, flat 
bed, and antidunes, are found from the model. The predicted wavelengths of 
antidunes and ranges of wavelengths of dunes, and the predicted conditions for 
change of bed configuration are found to be in good agreement with experimental 
data. Finally, brief consideration is given to the factors involved in determining 
the maximum heights of the bed features and surface waves. 

1. Introduction 
Water flowing over an erodible bed of sand interacts with the bed and deforms 

it into several different configurations. Three principal types of bed features are 
usually distinguished: dunes, flat bed, and antidunes. These bed forms are the 
result of an orderly pattern of scour and deposition caused by a systematic 
perturbation of the gross forward transport of bed material. The nature of the 
interaction between the bed and fluid and the resulting configuration depend on 
the depth and velocity of flow, and the properties of the sediment and fluid. 
For water flowing at  a constant depth over a sand bed, the succession of bed 
configurations with increasing velocity is as follows. 

If the flow velocity is great enough to move the individual sand grains but less 
than another limiting value which will be discussed presently, the bed is spon- 
taneously deformed into irregular features called dunes. A typical dune pattern 
in a laboratory flume is shown in figure 1, plate 1. The distinguishing features of 
dunes are : their shape, which in longitudinal section is approximately triangular 
with a gentle upstream slope that is slightly convex upward and a steep down- 
stream slope; their size and arrangement, which are random for the individual 

t Now a t  Hydrodynamics Laboratory, Department of Civil Engineering, Massachusctts 
Institute of Technology. 
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dunes, but uniform in the statistical sense; their downstream movement, which 
takes place at a rate small compared to the flow velocity; and the flow separation 
that usually occurs in the lee of the dunes. Dunes are the result of a pattern of 
scour and deposition due to the perturbation velocities induced by any pro- 
tuberance on the bed; the dunes themselves are such projections, and are there- 
fore self-propagating. Any small disturbance on an initially flat bed, such as a 
few sand grains piled above the mean level of the bed, or any external disturbance 
to the flow, will initiate the growth of dunes if the flow is such that dunes can 
form. At low Froude numbers the free surface is flat and at higher Froude numbers 
stationary gravity waves occur that are out of phase with the bed profile. How- 
ever, a free surface is not essential for the formation of dunes since they also 
occur in closed conduits carrying sediment-laden flows. 

Dunes should be distinguished from the much larger features called sand bars, 
which have very long, gentle upstream slopes and short, steep downstream slopes. 
A good description of these bed features has been given by Sundborg (1957). 
Sand bars are much longer than dunes, and usually occur as isolated features, 
whereas dunes are periodic and occur in trains. Dunes frequently occur on 
sand bars. 

As the velocity of flow is increased, a value will be reached above which dunes 
no longer occur, and instead the bed and free surface are flat, as shown in figure 2, 
plate 8. For this configuration, the fluid-bed interface is stable. If a deformation 
of the sand bed is artificially induced, it will not persist or propagate, but will 
decrease in amplitude, and the bed will again become flat. For some depths and 
sand sizes the flat bed regime does not occur with increasing velocity, and 
instead sand bars and other bed features that are not of any one well-defined type 
form after dunes (Simons, Richardson & Albertson 1961). 

When the velocity and the Froude number are further increased, the water 
surface becomes unstable, and even small disturbances give rise to stationary 
surface waves. The perturbation velocities associated with the surface waves 
modify the local sediment transport capacity of the flow and thereby cause a 
pattern of scour and deposition which forms trains of long, sinusoidal-shaped 
waves of sand that are in phase with the surface waves, and usually move slowly 
upstream. These features are called antidunes,t and the surface waves accom- 
panying them are referred to as stationary waves or sand waves. A typical 
antidune configuration in a laboratory flume is shown in figure 3, plate 2. Once 
initiated, antidunes grow in amplitude until they reach an equilibrium height, 
or become so high that the surface waves break in the upstream direction. The 
agitation accompanying wave breaking obliterates the antidunes and levels the 
bed which then remains flat until another train of antidunes forms. The cycle 
of wave initiation, growth, and breaking is repeated with a period of one to several 

t Sinusoidal-shaped bed features in phase with surface waves were first called antidunes 
by Gilbert (1914) ' because they are contrasted with dunes in their direction of movement; 
they travel against the current instead of with i t '  (p. 31).  However, the distinguishing 
characteristic of antidunes, as the term is used in this paper, is not their direction of move- 
ment, but their interaction with surface gravity waves that are in phase with the bed 
profile. Under this definition, all bed features in phase with surface waves are classed as 
antidunes, whether they move upstream, downstream, or not a t  all. 
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minutes, depending on the depth and velocity of flow and the sand character- 
istics. Antidunes and the accompanying stationary waves are occasionally 
three-dimensional (short-crested) in form. 

No satisfactory general explanation of the formation and characteristics of 
the various bed configurations has been proposed. An understanding of the 
fluid-bed interface is important in river engineering since the roughness of the 
channel is determined in large part by the form of the bed, and the sediment 
transport capacity of a flow has been found in laboratory and field studies to be 
closely related to the bed configuration (Vanoni & Brooks 1957; Simons & 
Richardson 1961; Tsubaki, Kawasumi & Yasutomi 1953). The purpose of this 
paper is to present a mathematical model for free-surface flow over an erodible 
bed, and to use the model to examine the stability of the fluid-bed interface. 
Expressions for the wavelength and velocity of movement of the bed features 
are developed, and the conditions under which the various principal bed con- 
figurations can occur are investigated. Finally, the maximum heights of the 
bed features and the waves which form above antidunes are briefly considered. 
The results of the analysis are compared with experimental data. 

2. Free-surface flow over a wavy erodible bed 
In  this analysis, the forms of the bed and free surface will be idealized as 

two-dimensional. The flow will be treated as irrotational, and the viscosity, 
surface tension, and compressibility of the fluid will be neglected. The subscripts 
x, y, and t denote partial differentiation with respect to the x and y co-ordinates 
and time, respectively. 

Consider the flow over a wavy erodible bed of a fluid with constant mean depth 
d and flow velocity U in the positive x-direction. Taking the origin of the vertical 
y co-ordinate, positive upward, at the undisturbed position of the free surface, 
as shown in figure 4, the profiles of the free surface and bed will be denoted by 
y = c(x, t) and y = - d + ~ ( x ,  t), respectively. The amplitudes of ( and 7 will be 
treated as very small in comparison to the wavelength, and a(/ax and ay/ax 
will be limited to values very much smaller than unity. With these restrictions, 
the non-linear terms in the boundary conditions can be neglected. Since the flow 
is treated as irrotational, the velocity q can be expressed as the gradient of a 
velocity potential q5, 

where u and v are the x- and y-components, respectively, of the perturbation 
velocity due to the waviness of the bed. The incompressibility of the fluid 
requires that $ be harmonic for all t ,  

(1) 

(2) 

q = ( U + u , v )  = vq5, 

v=q5 = (bTX + $,, = 0. 
The kinematic boundary condition that the velocity at  the free surface be tangent 
to the surface yields 

The dynamic condition that the pressure be constant at the free surface is 
expressed by Bernoulli’s equation as 

U(z+[ t=q5,  on y = O .  

g t +  Uq5,+q5, = 0 on y = 0. (3) 
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At the interface between the fluid and the bed there are two kinematic conditions 
to be satisfied. The first is that the velocity component normal to the bed must 
vanish, 

(4) 

The second condition involves the continuity of sediment movement, 

G, +Byt  = 0, ( 5 )  

where G(x, t )  is the local rate of sediment transport per unit width on a weight 
basis (e.g. kilograms per second per metre of width) and B is the bulk specific 
weight of the sediment in the bed. 

For this analysis, the form of the bed will be taken as a sinusoidal wave with 
varying amplitude, ~ ( x ,  t )  = a(t)  sin k(x - U't), 

where a(t)  is the amplitude of the bed features, k = 2n/L is the wave number, 
L is the wavelength, and Q, is the velocity of the bed features, assumed constant, 
in the x-direction (see figure 4). The profile given by (6) is averygoodrepresenta- 
tion of the profiles of antidunes. It is a much poorer representation of dunes 
which are generally asymmetric. However, because of the separation zones and 
accompanying free streamlines which occur downstream from the dune crests, 
as shown in figure 5, (6) appears to be a reasonable approximation for the lowest 
streamline of flow over dunes. In  any event, any bed profile that is a simple 
harmonic function of x can be obtained by linear superposition of expressions 
of the form of (6) since it is the most general Fourier component. 

The complex potential which satisfies (1) through (4) for the bed profile given 
by (6) may be obtained in the following way. For a simple harmonic progressive 
surface wave of fixed amplitude A ,  propagating in the negative x-direction with 
speed ( u  - u b )  in a fluid at rest with a horizontal bottom at mean depth D, as 
shown in figure 4 (a ) ,  the complex potential is (Milne-Thomson 1960, p. 390) 

cos k [ ~ '  + iD + ( U  - &) t ] ,  A,( u - w 
W0(Z', t)  = sinh kD ( 7 )  

where z' = x ' + i y ' .  The zero subscript will be used to denote quantities per- 
taining to waves of fixed amplitude. After the co-ordinate transformation 
2' = z -  Ut,  the co-ordinates are moving with a velocity - U relative to a fixed 
observer, and the waves are moving with a velocity u, relative to the co-ordinates. 
The co-ordinates are then brought to rest by superposing a velocity U on the 
system; this is accomplished by adding Uz to the complex potential. Since U, 
is observed to be always very much smaller than U ,  it  will be neglected compared 
t o  U .  The resulting flow is shown in figure 4 (b) .  Applying the above operations 
to (7), the complex potential for slowly moving, fixed-amplitude waves on a 
fluid flowing with velocity U ,  as shown in figure 4 ( b ) ,  is 

Any streamline can now be replaced by a moving boundary, as shown in figure 
4 (c). Therefore, (8) is also the complex potential for flow over a slowly moving, 
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5(x',t)=A sin k[x'+(U-U&] 

535 

(4 

((x, z) = A sin k(x -  U,t) 

U 
___c D 

t 
//////////;'/////////////////////////////////// 

(6) 

<(x, t)  = A sin R(x- U,t) 

(4 
FIGURE 4. Steps in the development of equations for flow over a moving wavy bed. 
(a) Translational gravity waves moving with velocity - ( U - U,)  in a fluid a t  rest with mean 
depth D. ( b )  Gravity waves moving with velocity U ,  in a fluid with a flow velocity U .  
A velocity U has been superposed on the fluid of figure (a) .  ( c )  Flow over a moving wavy bed. 
A streamline of the flow shown in figure ( b )  has been replaced by a moving boundary. 

wavy bed of fixed amplitude. From the method in which (8) was derived, it is 
apparent that U ,  D, and k are related by the usual formula for celerity of waves 

(9) of small amplitude, 

and the surface profile is given by 

go = A0sink(x-Ubt). (10) 

U2 = (g/k) tanh kD, 
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By separating the real and imaginary parts of (8), the velocity potential and 
stream function can be obtained as 

Y 

U 
___f Free 

FIGURE 5.  Free-surface flow over a dune bed, showing the separation in the lee 
of each dune. The lowest streamline of the flow is assumed to be a sinusoid. 

The bed corresponds to the streamline +o = - Ud and its position is 

y = - d + T/&, t ) .  

Substituting these values of $ and y into (12) and neglecting higher-order 
quantities yields sinh k(D - d )  

70 = A,-siAkJ) --sink(z-U,t). (13) 

The preceding analysis is for flow over a bed of fixed amplitude. However, if 
A,  is replaced by A(t) and (lo), (11) and (13) are substituted into the boundary 
conditions given by (2), (3) and (4), it  is seen that they are satisfied, provided 
A(t)  is a slowly varying function o f t  such that A, < UkA. Therefore, for flow 
over a bed of the form given by (6) with slowly varying amplitude the velocity 
potential is 

(14) 
cosh k ( y  + D) 

sinh kD $b = ux+ UA(t )  _____ cos k(x - Ubt), 

provided U, 4 U. A comparison of (13) and (6) shows that the amplitude of the 
bed profile is related to the amplitude of the surface waves by 

sinh k(D - d )  a(t)  = A(t )  sinh kD * 

Equation (9) can be substituted into (15) with the result 
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The last two equations show that the bed and water surface profiles are in phase 
or out of phase according to whether U 2  is greater than or less than (g lk )  tanh kd ,  
or equivalently, d is less than or greater than D. For the case in which d is greater 
than D, the complex potential for the region between the virtual horizontal 
bottom and the wavy bed (i.e. the region - d < y < - D) is the analytical con- 
tinuation, after an appropriate shift of the origin of vertical co-ordinates, across 
the horizontal bottom of the complex potential for flow over a wavy bed with 
D > d. The velocity potential q5 is unchanged and is given by (14). 

The remaining boundary condition, ( 5 ) ,  will now be used to obtain U, and a(t). 
This boundary condition introduces another unknown, the sediment transport 
rate G(x ,  t ) ,  which necessitates an equation relating G to the other parameters 
of the flow. Herein lies a stumbling block, for the mechanics of sediment trans- 
portation are not at all well understood, and only empirical formulas are avail- 
able. A modified empirical relation will be used here. It has been observed 
(Colby 1957; Vanoni & Brooks 1957; Kennedy 196lb) that for a given channel 
and bed material, the sediment transport rate generally increases with the mean 
flow velocity, and Colby (1961) concludes that the mean velocity is the major 
factor determining the sediment discharge. Further, in laboratory experiments, 
Kennedy (1961~)  found that for a limited range of depth the total sediment 
transport rate can be expressed as a power of the mean flow velocity. In  the 
present problem, the variation of the local depth of flow over the wavy bed is 
quite small compared to the mean depth and, in view of the above observations, 
it  seems reasonable to relate G(x ,  t )  to a power of some local velocity. Since the 
concentration of moving sediment is greatest near the bed, the velocity and the 
velocity variations in this region have the greatest effect on the local transport 
rate. Accordingly, the following transport relation will be used 

where m, n, and S are constants that depend on the depth and velocity of flow 
and the properties of the fluid and sediment. 

The quantity 6 is the distance by which the local sediment transport rate lags 
the local velocity a t  the bed, and is included for the following reasons. The 
transport of sediment by a fluid is due to real-fluid effects; the boundary shear 
moves the so-called bed load along the bed, and turbulence supports the partides 
that are swept along above the bed by the flowing fluid. Now if one were to follow 
a given parcel of fluid, one would expect to observe that, as the fluid velocity 
decreases (increases), the quantity of sediment transported by the parcel does 
not immediately decrease (increase) a corresponding amount, since the turbulence 
intensity and distribution, shear stress in the fluid and on the bed, velocity 
distribution, and other quantities determining the local sediment transport 
rate do not change instantaneously as the local depth and local mean velocity 
change. Instead, at any location, these quantities are strongly influenced by the 
flow conditions prevailing upstream from this 1ocation.t Furthermore, a finite 

t The phase shift between the local bed shear stress and the local velocity has been 
demonstrated theoretically by Brooke Benjamin (1959) for the case of a shearing flow of 
infinite depth over a wave boundary. 
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time and corresponding distance are required for the excess entrained sediment 
to settle to the bed as the velocity and. bed shear stress decrease, and for addi- 
tional sediment to be entrained as the velocity and shear stress increase. It is 
not now possible, or even consistent in a potential-flow solution, to attempt to 
take precise account of these real-fluid effects. Instead, only their cumulative 
effect in causing the local transport rate to lag behind the local velocity is con- 
sidered, and the quantity S represents the lag distance. The dependence of 6 on 
the amplitude and wavelength of the bed waves (i.e. on the magnitude and rate 
of change of the velocity perturbations) is assumed to be negligible, to a first 
approximation, and 6 is considered a function of only the mean depth and 
velocity of flow and the mobility of the sediment particles in the fluid. This 
assumption that 6 is primarily a property of the undisturbed flow can be valid 
only for small-amplitude bed features and velocity perturbations, but it appears 
to be adequate for a linearized wave analysis which itself is valid only for very 
small amplitudes. The effect of larger bed-wave amplitudes on 6 is discussed 
in $6.  

Expressions for lJb and a(t) ,  the celerity and amplitude of the bed waves, can 
now be obtained. Substitution of (14) into (17) and expansion into a binomial 
series yields 

cash k(D - d) G(x, t) = mUn - Im,nUnA(t) sin k(x - 6 - 6; t )  + O( u2). sinh kD 

When the higher-order terms in (18) are neglected, the net forward sediment 
transport rate, 8, for the whole stream at any time is 

G = mUn. (19) 

Substitution of (6), (15), (18) and (19) into (5) and neglecting terms of O(u2) 
gives the following differential equation for A(t)  : 

A,sink(x- ubt)-A[kUbcosk(%- Ubt) 
+(nGk2 /B)co thk (D-d)cosk (x -S -  V, t )]  = 0,  

the solution to which is 

A(t)  = A(0) esp {t(n8k2/B) cothk(D-d) sinks 
- [ ( n ~ k / B 6 ~ ) c o t h k ( D - d ) c o s k 6 + 1 ] l n  (sink(x-U,t)l). (20) 

Since A(t) is a function of time only, the second term of the exponent of (20) 
must vanish, giving 

V, = - (nGk/B) coth k(D - d )  cos kS. (21) 

Finally, the bed amplitude may be obtained by substituting (20) into (15), and 
eliminating the x-dependent term by (21): 

- 

1 exp [t coth k(D - d )  sin kS sinh k(D - d )  
sinh ICD a(t) = A(0) (22) 

Equation (22) shows that the amplitude of small bed waves on an otherwise 
flat bed caused by any arbitrary disturbance will increase exponentially with 
time provided k and 6 are such that the exponential term in ( 2 2 )  is positive; and 
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therefore, under these conditions, a flat bed is unstable. The amplitude cannot, 
of course, continue to grow indefinitely; as the amplitude increases, non-linear 
effects will arise that govern the equilibrium height of fully developed dunes and 
antidunes. The nature of these non-linear effects will be discussed in $ 6 .  The 
expressions for U, and a(t) ,  (21) and (22), will be examined in $4 3 and 4 to deter- 
mine the conditions under which the different bed configurations form, and the 
characteristics of the bed features. 

3. Conditions for occurrence of different configurations 
From (15), (21) and (22) five different bed configurations can be distinguished. 

The various configurations and the conditions for their occurrence are sum- 
marized in table 1, and are arrived at as follows. 

Bed and Movement of Bed 

Positive 0 < k8 < $n Positive Positive Upstream 
Positive $n Positive Zero None } Antidunes 
Positive &r < k8 < n Positive Negative Downstream 
Negative n < lc8 < &r Negative Positive 
Negative 0 < k8 < n Positive __ 7 ] Plat bed 

Case surface profiles (D - d)  k8 sin k8 cos k8 bed features configuration 

{ 
{ Positive n < k8 < 2rr Negative __ -_ 4 C  z I waves 

] In phase 
3 

5 Out of phase Negative 4n < k8 < 2n Negative Positive Downstream Dunes 

TABLE 1. Summary of bed configurations and the conditions for their occurrence. 

If the bed and surface profiles are in phase, (15) shows that D is greater than d ;  
then coth k(D - d )  is positive and from (22), sin kS must also be positive if the 
amplitude of the bed waves is to increase with time. For this case, (21) shows 
that the bed features will move upstream, remain stationary, or move down- 
stream according as cos ES is positive, zero, or negative. These configurations 
correspond to cases 1, 2 and 3, respectively, in table 1. 

Similarly, for D less than d ,  (22) shows that sink8 must be negative for the 
features to grow and thus k8 must be between n and 27r. From (21), it  is seen that 
the bed features will move upstream if rr < k8 < in, remain stationary if 
k8 = #7r, and move downstream if @r < k8 < 3n. However, it appears that the 
first two of these configurations are not possible, due to the following real-fluid 
effect. When the bed and surface profiles are out of phase, an adverse pressure 
gradient occurs on the downstream slopes of the be& €eatures and proZluces Bow 
separation in the lee of each dune, as shown in figure 5. As the particles moving 
along and near the bed pass over a dune crest, some of them settle out of the 
main flow into the separation zone and are deposited on the bed; this deposition 
on the lee-slopes of the dunes causes the dunes to move downstream. Now an 
upstream movement would require the occurrence of scour on the downstream 
slopes in the regions of flow separation and deposition on the upstream slopes 
where the lowest streamline is in contact with the bed. Similarly, stationary 
dunes could occur only if there were no net deposition in the lee of the dune 
crests. These two patterns of scour and deposition do not seem physically pos- 
sible, and have not, in fact, been observed in the laboratory or in natural streams. 

34 Fluid Mech. 16 
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Therefore, if D < d and rr < kS < +n, the only admissible solution is the trivial 
one, a(t) = 0, corresponding to the flabbed. This condition is represented in 
table 1 by case 4a. Case 4 also includes the situation in which ( D - d )  and sinks 
are different in sign, giving a negative exponent in (22) so that a(t) decreases 
with time and the bed becomes flat. 

Case 5 represents the configuration for the bed and surface profiles out of' 
phase and +?T < kS < 2n, giving a downstream movement of the features. 

An interesting observation in table 1 is that as the velocity is increased (with 
d held constant? say) so that the bed form changes from dunes to flat bed to anti- 
dunes, kS decreases from a value greater than 4n to less than in (excluding the 
flat bed corresponding to ( D - d )  and sin kS being different in sign). It is experi- 
mentally observed (for example, Kennedy 1961 a ;  Brooks 1954) that L. generally 
increases with U .  Thus, the decrease in k6 indicates that with increasing U ,  
S increases less rapidly than L (or possibly even decreases). 

A meaningful distinction between dunes and antidunes is that antidunes are 
any features for which D > d ,  while for dunes, D < d .  Using this criterion, anti- 
dunes occur only at relatively high velocities (large values of D and, from (9), 
large U for a given k )  and the antidune regime is separated from the dune regime 
by the flat-bed rkgime as kS varies with changing flow conditions. According to 
this criterion? cases 1, 2, and 3 of table 1 represent antidunes. Case 1 represents 
antidunes that move upstream; this is the most frequently observed type in 
both natural and laboratory streams. Antidunes that remain stationary and 
antidunes that move downstream, cases 2 and 3, have been observed in laboratory 
flumes (Kennedy 1961a; Simons et al. 1961). Case 5 represents the ordinary 
type of dunes, which always move downstream. 

It should be noted that although frequent mention is made herein of free- 
surface waves accompanying dunes, the amplitude of these waves may be so 
small that they are not readily observed. For example, typical parameters for 
a dune configuration and the accompanying flow might be kd = 5.0 and F = 0-4, 
where F2 = U2/gd. For these values, (16) yields A / .  = 0-054, so the surface-wave 
amplitude is less than 6 yo of the dune amplitude. For longer dunes, the surface 
wave can actually be observed, as described by Simons et al. (1961). 

4. Wavelength and velocity of movement of bed features 
Thus far the wavelength, L, has been left arbitrary, the only restriction being 

that the flow velocity U ,  the depth D to the virtual horizontal bottom, and the 
wave-number k are related by (9). Therefore, L can take on any value greater 
than the minimum, L,,, given by 

which (9) yields for D -+ co. However, in both natural and laboratory streams, 
it is observed' that for each flow velocity, depth, and bed material, there is a 
characteristic wavelength that is dominant over all others. It is shown in this 
section that the dominant wavelength can be predicted from the model developed 
in 8 2. When the wavelength is known, the type of bed configuration and velocity 
of the bed features can also be determined. 

L, = 2nU2/g, (23) 
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Proceeding in the usual manner of fluid-stability analysis, it  is assumed that 
the dominant wavelength is that for which the initial rate of growth given by the 
linearized formulation is the greatest (see Brooke Benjamin 1957 for a discussion 
of the logic of this method of analysis). The problem now consists of determining 
the value of k for which at is a maximum at t = 0. From (22 ) ,  the initial rate 

nQk2 cosh k(D - d )  
B sinhkD 

of growth is 
U t ( O )  = A(0) -  - sin ks. 

The wave-number of the dominant wavelength is obtained by differentiating 
(24) with respect to k and equating the resulting expression to zero. Thus, after 
eliminating D by (9), the dominant wavelength is the solution to 

1 [2ksink8+k26cosks] kd dk B 

I1 gd 
k U2 cosh kd + -- sinh kd - d cosh kd = 0, 

which can be rearranged to yield 

U2 
gd (2+-i&8cotks)kdtanhkd’ 

1 + kd tanh kd + k8 cot k8 
$72 = - = -. 

where F is the Froude number of the flow. It is expedient to express (25 )  in terms 
of F ,  the dimensionless product kd, and a dimensionless quantity relating the lag 
distance to the flow depth. This is accomplished by letting S = j d ,  where j is a 
dimensionless quantity that depends on the depth and velocity of flow and the 
fluid and sediment properties. Substituting this expression for 8 into (25)  results 
in 

F2 - 1 + kd tanh kd +jkd cot jkd 
(kd)2 + (2 +jkd cotjkd) kd tanh k d .  

Equation (26) relates the wave number of the dominant wavelength to the para- 
meters of the flow, F and d, andj ,  which represents the properties of the fluid 
and bed material. 

A limiting case of (26) of particular interest is that for which S < d. This case 
is obtained by letting ,j -+ 0 in (26) : 

2 + kd tanh kd limy2 = -- 
j + O  (kd)2+ 3kd tanh kd’ (27) 

This expression will be useful for comparing the relations given by (26) for 
different values of j. 

The velocity, U,, of the bed features of the dominant wavelength can be 
obtained by first using (9) to eliminate U2 from (26) and then using the resulting 
expression to eliminate D from (21). The result, after some simplification, is 

sinh 2kd + Zkd cosjkd. 
sinh2 kd - jkd  cot jkd - 1- 1 

In the limiting casej -+ 0, for which the wavelength is given by (27), u b  is 

lim U, = __ 
i+O 

(29) 

34-2 
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Figure 6 shows the relation between F and kd given by ( 2 6 )  for values of j of 
0.5 and 2,  and for the limiting casej = 0.given by (27). In  addition, the relation 
between F and kd for the shortest two-dimensional (long-crested) waves that 
can form is shown. This relation is obtained by dividing (23 ) ,  which gives the 
length of the shortest possible two-dimensional waves, by 2nd with the result 

F 1.0 - 

0.8 - 

0 6  - 

0 4  .- 

j = 2  

Fk  = Lm/2nd = l / k d ,  

j = 2  

j = 0.5 

j=O*5 j = 2  i j = 2  j=0.5 
0.2 - 

I I I I I I I I I I I 
~ 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1  
kd = 2nd/L 

FIGURE 6. Variation of Froude number with kd given by (36) for values o f j  of 0,0.5,  and 2. 
The ( F ,  kd)-relation for the shortest possible two-dimensional waves, Fm = (kd)-*, is also 
shown. 

where F, is the maximum possible Froude number for a given k and d if the 
waves and bed features are two-dimensional. Thus, for long-crested waves, kd 
can take on any value between zero and l / F 2 ;  only if three-dimensional (short- 
crested) waves form can kd exceed this value, since for any U and D these waves 
are shorter than two-dimensional waves (Fuchs 1953). Therefore, in the region 
of figure 6 to the right of the curve F = Fm = (ha)-&, only three-dimensional 
waves can form and their wavelength is not given by (26 ) ,  which was derived 
for long-crested waves. The reason that (26 )  predicts values of kd larger than the 
maximum permissible for long-crested features in some ranges of F and j is 
that, in these ranges, the maxima and minima of a, as a function of kd, whose 
loci are given by (as), occur at values of kd exceeding l / F z .  Stated another way, 
for some values of F andj,  ( 2 6 )  has some roots that exceed 1 / P ,  and these roots 
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are not admissible because they would require values of tanh kD greater than 
unity in (9). 

For each value o f j  other than zero, (26) is seen to have an infinite number of 
singularities, one at each value of kd for which the denominator is zero. These 
singularities occur a t  negative values of cotjkd, since all other terms in the 
denominator are positive. Now cotjkd is periodic with a period of n-, and takes 
on all real values from + co to - co in each period. Therefore, (26) has one 
singularity in each n--interval of j k d ,  and the singularities separate the different 
branches of the equation. In  figure 6, the singularities appear as discontinuities 
where F jumps from zero to plus infinity.7 It is noteworthy that in regions away 
from their singularities, the relations for the different values of j are grouped 
closely around the curve for the limiting case j = 0. This is the reason it is con- 
venient to use this relation as a reference curve; it also has the desirable properties 
of being single-valued and continuous for all positive values of Ed. 

Of the infinite number of branches of (26) for eachj, only the first two and part 
of the third are of interest, the branches for the larger values of kd being in- 
admissible for the following reason. Ifjkd is greater than 2n, then L is less than S. 
If this were the case, it  would mean that the wavelength which developed was 
such that the material entrained at any point would be carried completely over 
the bed feature downstream from the one where it had resided, and deposited 
on the second feature downstream. Now the local velocity, bed shear stress, 
turbulence, and other factors responsible for the sediment transport are periodic 
with period L, and hence it does not seem reasonable that the local sediment 
transport a t  any point should be influenced by conditions a distance greater 
than L upstream. Consequently, the relation for each j has physical significance 
only where L is greater than 6, or equivalently, on the portions of the curves 
wherejkd is less than 277. This includes only the first two branches and a part 
of the third. 

The values of kd and corresponding values of F for the formation of each of 
the bed configurations given in table 1 can now be determined for any j. These 
are shown for several different j’s in figure 7 on curves representing (26) similar 
to those shown in figure 6. Two supplementary equations, (30) and a special 
form of (9), that will facilitate the discussion of this figure are also included in 
the graph. This rather complicated figure calls for a detailed explanation, 
as follows. 

The first supplementary equation shown in figure 7 is F = F, = (kd)--h; this 
is the ( F ,  kd)-relation for D = co. Long-crested waves are not a possible con- 
figuration in the region above this curve, as discussed previously. The other 
equation shown is the ( F ,  kd)-relation for the special case D = d. This is obtained 
by replacing D by d in (9) and dividing by gd with the result 

FZ = tanh kdlkd, (31) 

where Fa, as will be seen presently, is the minimum F for the formation of anti- 
dunes. This is the relation that must hold for all values of j if the virtual hori- 

t Actually, F changes from ico to co, since F2 goes from - co to  + co; however, only real 
positive values of F are shown because other values have no physical significance. 



534 John F. Kennedy 

zontal bottom is at the level of the actual channel bed.t For a given kd, F will 
he greater than or less than Fa according as D > d or D < d.8 In table 1,  it  is 
seen that D is greater than d for antidunes and less than d for dunes, and con- 
sequently, antidunes occur only in the region above this curve. Thus, for any 
kd, Fa given by (31) is the minimum P for the formation of antidunes, and the 
maximum F for the formation of dunes. 

The (F,kd)-relations given by (26) are not shown in the regions of figure 7 
where jkd > 277 or where F > Fm. In the first of these instances, (26) has no 
physical significance, since 6 is greater than L, and in the second, it is not the 
appropriate wavelength relation since two-dimensional waves cannot form. 
Thus, the first branch shown for eachj does not extend above the curve F = F,, 
and none of the third branch is included, since the portion of it which is of interest, 
jkd < 2n-, lies entirely above F = Fm. In addition, for eachj the segment of the 
first branch that lies below F = Fa is not shown for the following reason. In  this 
region, D < d and jkd < n, and hence the exponent of (22) is negative, so the 
amplitude of the bed waves diminishes with time, giving a flat bed. This corre- 
sponds to case 4 b  in table 1. In  fact, these portions of the first branches are the 
(F, kd)-relations for which the rate of amplitude decrease is a maximum. Since 
the bed configuration is fully defined by the branches for which the bed features 
grow, the inclusion of these segments for diminishing amplitude would serve 
no purpose. 

For each value of j other than zero in figure 7, the intervals over which anti- 
dunes moving upstream, antidunes moving downstream, and dunes occur are 
shown by broken lines, short-dashed lines, and solid lines, respectively, on the 
curves representing (26). In  the intervals where a flat bed is predicted by table 1, 
the ( F ,  kd)-relations given by (26) are shown by long-dashed lines; actually, in 
these ranges of F ,  dunes can form, but their wavelength cannot be predicted 
with the present model, as will be discussed below along with the significance of 
the short vertical line segments. The bounds of the different intervals are 
deduced in the following way. As explained in $ 3  and shown in table 1, anti- 
dunes form only if D > d, and move upstream if 0 < jkd < &n-, and downstream 
if +n- < jkd < n. It follows then that antidunes occur in the region of figure 7 
above the curve P = Fa (Fa being the Froude number for D = d) and their direc- 
tion of movement changes at jkd = in-. For the dune configuration, table 1 
(case 5 )  shows that D < d and hence, this bed form occurs below the curve 
F = Fa in the intervals where #n- < jkd < 2n-. In  the range of Froude numbers 
between where the first branch of the (F, kd)-relation for any j intersects the 
F = Fa curve from above and the vertical line segment for that j intersects the 
3' = Fa curve from below, the only admissible solution for two-dimensional 
features is the trivial one, the flat bed. 

If the bottoms do coincide, (15) shows that the surface-wave amplitude can be 
finite only if the bed waves have zero amplitude. Then the formulation presented in $ 2  
reduces to that for a stationary surface wave in a channel with a horizontal bottom. 

$ This can be reasoned as follows. If D = d, the virtual and actual channel bottoms co- 
incide and F = Fa. Equation (9) shows that U ,  and hence F ,  is a monotonically increasing 
function of D for fixed k. Therefore, P 5 Fa according as D z d. 
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There are two regions of figure 7 in which the bed configuration is not uniquely 
defined by the present two-dimensional, maximum-rate-of-growth model. The 
first of these regions is that in which a flat bed is predicted by table 1 (case 4a), 
i.e. the region where D < d and 7~ < jkd < #T, and in which the (F, kd)-relations 
are shown by long-dashed lines in figure 7. For any j, the area below the curve 
F = Fa and to the right of the vertical line segment extending upward from the 

2.0 Ti 
I 

= tanh kdlkd 
F 2 =  F:= 1/kd 

0 1 2  3 4  5 6 7 8 9 1 0 1 1 1  
kd = 2nd /L  

FIGURE 7. Regions of occurrence of different bed configurations for several values of j ,  
F = Fa is the minimum Froude number for the occurrence of antidunes, and the maximum 
Froude number for the occurrence of dunes. F = Fm is the maximum Froude number for 
the occurrence of long-crested features. The different configurations are denoted by the 
character of the lines representing (26) (except for j = 0 ) ,  as follows: , antidunes 
moving upstream; - - - - - , antidunes moving downstream; -, dunes; -----, region in 
u-hich flat bed is predicted by table 1. The short vertical line segments show for eachj the 
range of F over which the rkgime of transition from dunes to flat bed occurs. The flat 
bed is the configuration for Froude numbers between the transition regime and antidune 
rbgime. 

( F ,  lid)-relation (26) at jkd = $ 7 ~  fulfils the requisites for dune formation. (Note 
that, in the area to the left of this vertical line segment, dunes are not a possible 
configuration becausejkd < $ 7 ~  for the j in question; however, this is an area of 
possible dune formation for a larger j, and hence the whole region between the 
curve j k d  = #7r (not shown) and the curve F = Fa is a region where dunes can 
form.) For Froude numbers in this range, dunes can form, but their wavelength 
is not given by (26). If it  is assumed that t h e  wavelength with the maximum 
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initial growth rate dominates, then the wavelength is given by jkd = $T;T 
however, as discussed in 3 3, dunes with jkd = $71 cannot form because their 
existence would require no net deposition on the downstream slopes in the region 
of separation, and no scour on the upstream slopes. Thus, there is a region of 
transition from dunes to flat bed in which the bed configuration is not com- 
pletely described by this analysis. For any j, the lower Froude number for this 
transition region is the F corresponding to jkd = $71, and the upper Froude 
number is the F at the intersection of the curve F = Fa and the vertical line 
extending from the point jkd = $71. It is noteworthy that in laboratory experi- 
ments the change in bed configuration from dunes to flat bed does not occur at 
a sharply delineated set of flow conditions; instead, there is a range of Froude 
number for any depth in which the bed configuration does not consist of features 
of any one well-defined type. Vanoni & Brooks (1957) observed alternate reaches 
of dunes and flat bed for these intermediate Froude numbers. Simons et al. 
(1961) have termed this the ‘transition rdgime’ because the bed features are so 
varied, and are dependent not only on the depth and velocity of flow, but also 
on the form of the bed before the flow was started. They observed that the bed 
form in the transition regime was ‘in between dunes and a plane bed and con- 
sisted of washed out dunes and sand bars’ (p. A-47). 

The other region in which the configuration is not uniquely defined is that 
above the curve F = Fm. In  this region, only short-crested features can form and 
are not described by the model developed here for two-dimensional waves. 
However, the experimental data presented in Q 5 and shown in figure 9 generally 
lie below the curve F = Fm, the only exception being antidunes at  higher Froude 
numbers, which agree well with the (F ,  kd)-relation for j = 0, equation (27). 
In  laboratory experiments, Kennedy (1961 a) found that the wavelengths and 
behaviour of short-crested and long-crested antidunes were not significantly 
different. Therefore, as a practical matter, the failure of the present model to 
describe three-dimensional waves and bed features is not a severe limitation. 

The regions delineated by the character of the lines in figure 7 for the occur- 
rence of the different bed configurations are shown in figure 8 in the ( F ,  j)-plane. 
Several interesting observations can be made from this figure. First, there is a 
minimum F ,  that occurs at j = 0, for the change in bed form from flat bed to 
antidunes. An expression for the value of kd at which this change in bed form 
occurs (the kd at which the (F ,  kd)-relation given by (26) for a n y j  intersects the 
F = Fa curve in figure 7) can be obtained by substituting the expression for Fa 
given by (31) for F in (26). The value of kd for the intersection of these curves is 
found to be the solution to  

sinh2 Ed -jkd cotjkd = 1. (32) 

That this vertical line segment represents dunes with the maximum growth rate can 
be reasoned in the following way. On the successive branches of (26) da,/dk and da,/d(kd) 
for constant d ,  is alternately a maximum and a minimum. Therefore, between any branch 
where a, is a maximum and the next branch to the right, a, is a monotonically decreasing 
function of kd for any constant F.  Hence, a, will be a maximum for the smallest admissible 
values of kd in the region. For the situation in question, this is the vertical line segment 
j k d  = &. 
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F o r j  = 0, (32) reduces to kd = sinh-l,/2 = 1.147 and the corresponding F given 
by (27) is F = Fa = 0.844. This is the lowest possible Froude number for the 
transformation from flat bed to two-dimensional antidunes. In  figure 7 it  is 
obvious that the highest possible F for this change is unity. 
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FIGURE 8. Conditions for occurrence of different bed configurations. 

Another significant point shown in figure 8 is that for small values of j, anti- 
dunes moving downstream cannot occur. The conditions for the absence of these 
bed features is that the point at whichjkd = &r on the (F ,  kd)-relation given by 
(26) falls below the curve P = Fa (given by (31)) in figure 7. Therefore, the mini- 
mum value of j at which these antidunes can occur is obtained by substituting 
jkd = $ 7 ~  (the value of jkd at  which the direction of antidune movement changes, 
as shown in table 1) into (32), which gives the intersection of (26) and (31), with 
the result kd = sinh-ll = 0.881. Substituting this value of kd into jkd = &T 

yields j = 1.78. For smaller j the only antidunes possible are those that move 
upstream. It is also apparent in figure 8 that two-dimensional antidunes moving 
upstream are not a possible configuration at  large values of j. The maximum j 
for the occurrence of these antidunes is obtained by substituting F2 = 1/kd into 
(26) and lettingjkd = $7~. This results in 

kd + 2 tanh kd = 1 + kd tanh kd, 

which has the solution kd = 0-396. Substituting this kd into jkd = $ 7 ~  gives 
j = 3.97. For largerj, two-dimensional antidunes moving upstream cannot form. 
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The regime of transition is the region of figure 7 above the curve j k d  = $n 
(not shown) and below F = Fa. Therefore, for any values o f j  such that the point 
on the ( F ,  kd)-relation where j k d  = $7r lies above F = Fa, the transition regime 
does not occur. In figure 8 it can be seen that this is the situation a t  higher values 
ofj. The maximum j for the occurrence of the transition regime can be obtained 
by substituting j k d  = #rr into (33) with the result kd = sinh-l 1 = 0.881. When 
this value of kd is substituted into j kd  = #7r, the result i s j  = 5.35. The transition 
regime does not occur for largerj. 

0,350 mm. sand 
0448 mm. sand 

A Tsubaki cr af. 1.46 mm. sand 

0 Antiduncs 

0 2 4 6 8 10 12 14 16 
kd = 2md/L 

FIGURE 9. Comparison of predicted and observed regions for 
formation of different bed configurations. 

5. Comparison with experimental data 
Figure 9 shows a comparison of experimental data reported by various in- 

vestigators and the reference curves shown in figures 6 and 7. The reference 
curves are the ( F ,  kd)-relation for j = 0, (27); the maximum possible Froude 
number for long-crested features, (30); and the minimum Froude number for 
antidunes and maximum for dunes, (31). In  addition, the minimum and maxi- 
mum Froude numbers for the change in bed form from flat bed to antidunes 
( F  = 0.844 and 1)  are delineated. The sources of the data and a brief summary of 
the range of variables represented are given in table 3. In figure 9 the bed con- 
figuration is noted by the shading of each point. Since there is little consistency 
in the terminology used to describe bed features, and some authors did not 
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include a description of the bed profile, the noted configurations represent the 
present writer's classification based on the investigators' descriptions of the bed. 
For Tison's data, all bed forms are plotted as dunes, and for the natural stream 
data reported by Kennedy, all bed forms are plotted as antidunes, since it was 
not possible to distinguish between dunes and antidunes for these two sets of 
data. 

Source 
Barton & Lin (1955) 
Brooks (1954) 

Kennedy (1961a) 

Laurscn (1957) 
Plate (1957) 

Simons et al. (1961) 
Tison ( 1949) 
Tsubaki et al. (1953) 

Description 
of stream 

Lab. flume 
Lab. flume 

Lab. flume 
Lab. flume 
Natural streams 
Lab. flume 
Lab. flume 

Lab. flume 
Lab. flume 
Irrigation canals 

Range 
of depth 

(cm) 
9.1 - 42.1 
5.70- 8.66 
6.00- 9.1 
4.42- 10.61 
3.75- 10.55 
5.5-120 

7.62- 30.33 
2.86- 5.55 

1-31 
3.02 

3 . 4 6  11.98 
5.88- 30.36 
1 - 34 

30.9 - 36.1 
10.8 - 46.7 
29.5 - 35.9 
25.2 - 32.9 

Range 
of velocity 
(cmjsec) 

21.6- 53.3 
25.0- 40.8 
28.3- 42.7 
47.9-105.2 
50.3-14107 
64 -244 
32.6- 70.4 
30.2- 33.2 

2.9 
34-2 

37.2- 41.1 
21-3-188.4 
18 - 50 
53.3- 53.6 
54.9- 76.5 
66.1- 74.0 
73.0- 77.5 

Median 
sand size 

0.18 
0.088 
0- 145 
0-233 
0.549 

0.1 
0.253 
0.350 
0.448 
0.545 
0.45 

0.04-1-75 
1.03 
1.26 
1.46 
2-26 

0.157-0'46 

TABLE 2. Summary of range of variables represented by data of figure 9. 

For the higher Froude numbers, in the antidune regime, the experimental 
points are grouped closely around the theoretical relation for j = 0,  (27). 9' L ince 
the relations for other values of j converge to (27) for these larger values of F, 
as can be seen in figure 6, the agreement with theory is quite good in this region. 
It is actually somewhat surprising that the agreement with (27) is so good a t  
the high values of F (greater than 1-24) where it predicts values of Icd greater 
than the maximum possible for long-crested features, (30). In  the dune regime 
(F smaller than about 0.8) practically all points fall below the curve, giving the 
theoretical maximum Froude number for dunes, F = Fa. Note also that anti- 
dunes generally occur in or above the predicted range of minimum Froude number 
for their formation, F = 0.844 to 1. Thus, for the whole range of F and Icd, 
figure 9 indicates good agreement between theory and experiment. 

There is no means of showing in figure 9 experimental data for flows producing 
a flat bed. However, the data, (unpublished) on the wavelengths of the dunes for 
the constant-depth experiments by Vanoni & Brooks (1957) and the constant- 
discharge experiments by Kennedy (196lb) show that the dune regime does 
end a t  or very near the predicted maximum, F = Fa. The experimental data of 
Simons &; Richardson (1961), and the data from the experiments by Kennedy 
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(1961 a )  at high values of F indicate that the transition from flat bed to anti- 
dunes occurs in the predicted range (F = 0.844 to 1). 

In  figure 8, it can be seen that for large values of j the flat-bed regime occurs 
only over a narrow range of Froude numbers. For example, withj = 5 the regime 
of transition from dunes to flat bed ends at F = 0.88, and the change from flat 
bed to antidunes occurs a t  F = 0.97. Moreover, the range of F for the flat bed 
decreases with increasing j; therefore, if j increases as F is increased, the range 
of F for the flat bed will be further reduced. In  the experiments of Simons et al. 
(1961) shown in figure 9, which for F above about 0-4 have large values o f j  as 
can be seen by plotting these points on figure 7, no runs with a flat bed were 
obtained between the dune and antidune rhgimes. Apparently in these experi- 
ments the variation o f j  with F was such that the flat-bedr6gime couldnot occur. 

6. Maximum heights of bed features and surface waves 
Both dunes and antidunes are observed to have maximum heights, which 

depend on the depth and velocity of flow and the properties of the fluid and sedi- 
ment. As with the wavelengths, the maximum height is quite uniform for the 
antidunes of a given flow, but variable for the individual dunes. The linearized 
analysis developed in 5 2 cannot, of course, be used to predict the maximum 
height; in fact, this analysis predicts that the amplitude will increase indefinitely, 
as shown by (22). However, the concepts and analysis presented in the preceding 
sections provide a useful framework for discussion of some of the factors deter- 
mining the heights of fully-developed bed features. 

The steepening of antidunes as they grow is no doubt an important factor 
controlling their height. As antidunes become steeper, the weight of the particles 
opposes the forward motion of the sediment on the upstream slopes and aids it 
on the downstream slopes This causes the particles to deposit more readily as 
the velocity decreases on the upstream slopes, thereby reducing S, and when the 
antidunes become steep enough, the deposition all occurs on the upstream slopes 
and none on the crests. The steepening assists entrainment of particles on the 
downstream slopes, and a stage is finally reached where the flow picks up such a 
heavy sediment load on these slopes that no scour occurs in the troughs. When 
this condition of no deposition at the crests and no scour in the troughs is attained, 
the antidunes, and also the surface waves, stop growing. Then at the equilibrium 
height, 6 = 0; i.e. there is no lag between changes in velocity and sediment 
transport. If S = 0, ( 2 2 )  shows that the linearized analysis predicts no amplitude 
growth. It also follows from physical reasoning that if there is no lag between 
velocity and sediment transport changes, no further growth is possible if the 
features are symmetric. Note that having 6 = 0 when the features attain their 
maximum height does not contradict the notion that it is the value of S that in 
part determines the wavelength. It is the value of 6 that prevails when the 
antidunes first start to form that is instrumental in determining their wave- 
length. The equilibrium heights of sand ripples in the desert have been explained 
by KBrmh (1947) in a similar way. According to K&rm&n, ripples reach their 
equilibrium height when the Bernoulli effect, which causes the velocity and 
sediment transport rate to be greater at the crests and smaller in the troughs, is 



Dunes and antidunes in erodible-bed channels 541 

just balanced by the gravity effect on the heavy air-sand mixure near the bed; 
this latter effect causes the velocity and sediment transport to be greater in the 
troughs and less over the crests. 

The factors governing the maximum heights of dunes under a free-surface 
flow are not so obvious. As dunes become higher, the velocity and shear stress 
over the crests increase and finally become so high that no further deposition on 
the crests, and hence no further dune growth, is possible. Similarly, the velocity 
in the troughs decreases until no further net scour occurs in these regions. When 
dunes attain their maximum height and move downstream unchanged in form, 
6 must equal L; otherwise there would be a systematic change in the dune ampli- 
tude. Note that if 6 = L, j k d  = 27r and (22) shows that the linearized formulation 
predicts no amplitude growth. It seems reasonable that S might increase as the 
dunes become higher and steeper because particles leaving the crests have 
farther to settle to the bed, and are therefore carried a greater distance by the 
flow before they reach the bed. In  addition, the perturbation of the boundary 
layer and bed shear stress increases as the dunes become higher, probably causing 
a further increase in 6. 

Antidunes frequently become so high before reaching their maximum height 
governed by the transport of bed material discussed previously that the surface 
waves above them become unstable and break. The upstream wave in figure 3 
is a t  incipient breaking. There are two different mechanisms that could cause 
this breaking. The first is separation on the upstream slopes. As the antidunes 
become higher, the adverse pressure gradient en the upstream slopes increases 
and might become so great that separation occurs. The separation would upset 
the flow pattern and precipitate breaking of the waves. The other possible 
explanation is t h a t  the surface waves become so high they reach the maximum 
amplitude for stability and break. As shown in figure 9, the velocity-wavelength 
relation for flow over antidunes is not greatly different from that given by (23) 
for simple deep-water waves. Accordingly the perturbation velocities associated 
with flow over antidunes are practically the same as the perturbation velocities 
above an intermediate streamline (which represents the bed) of a stationary 
deep-water wave in a moving fluid. The profile of deep-water waves has been 
investigated by Michell(l893) who found that their maximum steepness, 2A,/L, 
is given by 

Twelve observations of the steepness at incipient breaking of long-crested 
stationary waves above antidunes have been reported by Kennedy (1961 a). 
The values ranged from 0.13 to 0.16 and are in good agreement with (33). 
These measurements indicate that whatever the mechanism actually responsible 
for the breaking, long-crested waves over antidunes have a maximum steepness 
that does not differ greatly from the value given by Michell. 

2AJL = 0.142. (33) 

7. Concluding remarks 
The greatest difficulty encountered in measuring or analyzing dunes is that 

no two are alike in size or shape, and their spacing is somewhat random, as can 
be seen in figure 1. When dunes start to form on an initially flat bed (by reducing 
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the velocity, say, to change from the flat bed to the dune r6gime) they are long- 
crested and evenly spaced. Before they reach their maximum height, a segment 
of a dune will start to move faster than its adjoining parts, and will break away 
from the original two-dimensional dune. Since each dune is influenced by the 
characteristics and relative positions of surrounding dunes, soon after one long- 
crested dune breaks up into three-dimensional features, adjacent ones will also 
lose their two-dimensional form. The bed configuration soon becomes chaotic 
and loses any semblance of order except in the statistical sense. The flow separa- 
tion immediately downstream from each dune and other real-fluid effects such as 
turbulence and the boundary shear-the very agents responsible for the sediment 
movement-further complicate the analysis. The principal deficiency of the 
model developed here when applied to dunes is that it  does not adequately take 
account of these factors. Flow separation was accounted for only by assuming 
the form of the free streamline (see figure 5) ,  an over-simplified two-dimensional 
bed profile was used, and a rather unsophisticated transport relation was in- 
troduced into the analysis. However, the model does represent the mechanism 
of dune formation and movement reasonably well, and is adequate €or studying 
their behaviour and many of their characteristics. The model is a much better 
representation for flow over antidunes since they do have a nearly sinusoidal 
profile and do not produce flow separation, except perhaps just before the surface 
waves break. 

Some experimental research would appear to be in order now to investigate 
the quantity 6 and its relation to depth and velooity of flow, fluid and sediment 
properties, and concentration of sediment in the fluid. In  fact, to the knowledge 
of the author, the existence of a lag between the local velocity and local transport 
rate has not been definitely established. With a better understanding of 6, it  
would be possible to predict the bed form that will accompany a given flow over 
a certain bed material, and possibly even the maximum height of the bed features. 
This would be a big step forward toward being able to predict the roughness of 
alluvial streams. 

Anderson (1953) has also presented an analysis of dunes that is based on the 
continuity of sediment movement and a potential solution for flow over a wavy 
bed of variable amplitude. His analysis yielded the following relation: 

sinh 2kd 
kd(tanh kd sinh 21cd-2)' 

p2 = 

This expression is not greatly different from (27) (the limiting case j = 0 )  for 
values of kd greater than about 5.  For smaller kd, it yields significantly higher 
Froude numbers. 

The general method used here to analyse flow over a bed whose geometry is 
formed by the flow should be applicable to other problems in which there is an 
interaction between a moving fluid and its boundaries. For example, a similar 
analysis might be applied to the formation of dunes in ice by wind, or the 
formation of dune-like features by a moving fluid that reacts chemically with its 
boundaries. In the first of these cases, a relation between the local velocity and 
local heat transfer rate, in which the local heat transfer lags the local velocity, 
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would have to be formulated. The chemical reaction problem would require 
a relation between the local velocity and local reaction rate that includes a lag 
between the local reaction rate and velocity. 

In  searching the literature for data on bed configurations, it  was found that 
very few authors have given complete, detailed measurements and descriptions 
of the bed forms of their experiments. Most experimental programmes have 
been primarily concerned with the roughness and sediment transport of alluvial 
streams, and i t  appeared that data on the bed configuration were taken only as 
a by-product, if at all. It is admittedly difficult and tedious to obtain good bed- 
form data because of the randomness of the bed features and their unsteady 
nature. However, the form of the bed plays a large role in determining the 
roughness of the stream; moreover, since the bed is the source of the transported 
material and the region of entrainment, the sediment transport rate is no doubt 
intimately related to the bed geometry. Accordingly, good data on the bed 
features are as important to the understanding of alluvial streams as data on 
the sediment transport rate and friction factor-indeed, an analysis of the 
latter two cannot be logically divorced from the bed configuration-and future 
workers in this area, both in laboratories and in the field, are urged to make 
careful measurements and observations of the bed configurations of their 
streams. 

In  summary, an analysis of the mechanics of dunes, flat bed, and antidunes 
formed by a flowing fluid with a free surface has been presented. A mathematical 
model of free-surface flow over an erodible bed was developed and used to in- 
vestigate the characteristics of the various bed features and their behaviour. It 
was found that the type of bed form and wavelength of the bed features depend 
on the Froude number, the depth of the flow, and the distance 6 by which the 
local sediment transport rate lags the local velocity; the velocity of the bed 
features was found to depend on these quantities and also the sediment transport 
rate. The sequence of bed features with increasing velocity predicted by the 
model is dunes, a regime of transition from dunes to flat bed (in which the bed 
configuration is not completely described), flat bed, antidunes moving down- 
stream, and antidunes moving upstream. It was found that for large values of 6, 
the flat bed occurs only over a narrow range of Froude number, and for smaII 6 
antidunes moving downstream do not occur. The conditions for the change from 
one configuration to another were predicted from the model, and equations were 
derived for the wavelength and velocity of the bed features. Insofar as compari- 
son was possible, good agreement was found between predicted and observed 
wavelengths of antidunes and ranges of wavelengths of dunes, and values of 
Froude number at  the transition from one bed form to another. Finally, a 
qualitative discussion of the factors involved in limiting the heights of the bed 
features was presented. 
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